Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
China Journal of Chinese Materia Medica ; (24): 170-182, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970512

RESUMO

This study aims to explore the mechanism of Qingkailing(QKL) Oral Preparation's heat-clearing, detoxifying, mind-tranquilizing effects based on "component-target-efficacy" network. To be specific, the potential targets of the 23 major components in QKL Oral Preparation were predicted by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) and SwissTargetPrediction. The target genes were obtained based on UniProt. OmicsBean and STRING 10 were used for Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment of the targets. Cytoscape 3.8.2 was employed for visualization and construction of "component-target-pathway-pharmacological effect-efficacy" network, followed by molecular docking between the 23 main active components and 15 key targets. Finally, the lipopolysaccharide(LPS)-induced RAW264.7 cells were adopted to verify the anti-inflammatory effect of six monomer components in QKL Oral Preparation. It was found that the 23 compounds affected 33 key signaling pathways through 236 related targets, such as arachidonic acid metabolism, tumor necrosis factor α(TNF-α) signaling pathway, inflammatory mediator regulation of TRP channels, cAMP signaling pathway, cGMP-PKG signaling pathway, Th17 cell differentiation, interleukin-17(IL-17) signaling pathway, neuroactive ligand-receptor intera-ction, calcium signaling pathway, and GABAergic synapse. They were involved in the anti-inflammation, immune regulation, antipyretic effect, and anti-convulsion of the prescription. The "component-target-pathway-pharmacological effect-efficacy" network of QKL Oral Preparation was constructed. Molecular docking showed that the main active components had high binding affinity to the key targets. In vitro cell experiment indicated that the six components in the prescription(hyodeoxycholic acid, baicalin, chlorogenic acid, isochlorogenic acid C, epigoitrin, geniposide) can reduce the expression of nitric oxide(NO), TNF-α, and interleukin-6(IL-6) in cell supernatant(P<0.05). Thus, the above six components may be the key pharmacodynamic substances of QKL Oral Preparation. The major components in QKL Oral Prescription, including hyodeoxycholic acid, baicalin, chlorogenic acid, isochlorogenic acid C, epigoitrin, geniposide, cholic acid, isochlorogenic acid A, and γ-aminobutyric acid, may interfere with multiple biological processes related to inflammation, immune regulation, fever, and convulsion by acting on the key protein targets such as IL-6, TNF, prostaglandin-endoperoxide synthase 2(PTGS2), arachidonate 5-lipoxygenase(ALOX5), vascular cell adhesion molecule 1(VCAM1), nitric oxide synthase 2(NOS2), prostaglandin E2 receptor EP2 subtype(PTGER2), gamma-aminobutyric acid receptor subunit alpha(GABRA), gamma-aminobutyric acid type B receptor subunit 1(GABBR1), and 4-aminobutyrate aminotransferase(ABAT). This study reveals the effective components and mechanism of QKL Oral Prescription.


Assuntos
Animais , Camundongos , Ácido Clorogênico , Medicamentos de Ervas Chinesas/farmacologia , Ácido gama-Aminobutírico , Interleucina-6 , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa/genética
2.
China Journal of Chinese Materia Medica ; (24): 1852-1857, 2014.
Artigo em Chinês | WPRIM | ID: wpr-327908

RESUMO

The chemical constituents were isolated and purified by various chromatographic techniques indluding silica gel, reverse phase silica gel, sephadex LH-20 and pre-HPLC and identified by their physicochemical properties and spectral data. Sixteen phenolic compounds had been isolated and n-butanol extracts which were fractionated from the ethanol extract of Oplopanax horridus roots bark. Their structures were identified as below, including 7 phenylpropanoid compounds, ferulic acid (1), 3-acetylcaffeic acid (2), caffeic acid (3), homovanillyl alcohol 4-O-beta-D-glucopyranoside (4), 3-hydroxyphenethyl alcohol 4-O-beta-D-glucopyranoside (5), 3, 5-dimethoxycinnamyl alcohol 4-O-beta-D-glucopyranoside (6), and 3-dimethoxycinnamyl alcohol 4-O-beta-D-glucopyranoside (7). Three coumarins, scopoletin (8), esculetin (9) and 3'-angeloyl-4'-acetyl-cis-knellactone (10). And 6 lignan compounds, (+)-isolaricires-inol-9'-O-beta-D-glucopyranoside (11), 3, 3'-dimethoxy-4, 9, 9'-trihydroxy-4', 7-epoxy-5', 8-lignan-4, 9-bis-O-beta-D-glucopyranoside (12), (+)-5, 5'-dimethoxylariciresinol 4'-O-beta-D-glucopyranoside (13), (-)-5,5'-dimethoxylariciresinol 4'-O-beta-D-glucopyranoside (14), (-)-pinoresinol 4'-O-beta-D-glucopyranoside (15), and (+)-5, 5'-dimethoxylariciresinol 9'-O-beta-D-glucopyranoside (16). All compounds were isolated and identified for the first time from this plant All the constituents except compounds 4, 6, 12 and 13 were obtained for the first time from the genus Oplopanax.


Assuntos
Medicamentos de Ervas Chinesas , Química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oplopanax , Química , Fenóis , Química , Espectrometria de Massas por Ionização por Electrospray
3.
China Journal of Chinese Materia Medica ; (24): 2585-2587, 2007.
Artigo em Chinês | WPRIM | ID: wpr-324329

RESUMO

The advances in the research on pharmacological activities of aucubin have been summarized in the last ten years. Aucubin is one of active components of Chinese medicinal herbs such as Eucommia ulmoides and has been shown wide pharmacological activities including hepatoproective, antitoxicanti-inflammatory, antioxidant, antiaging, antiosteoporosis and neurotrophic and should be further researched and utilized.


Assuntos
Animais , Envelhecimento , Anti-Inflamatórios , Farmacologia , Antioxidantes , Farmacologia , Eucommiaceae , Química , Glucosídeos , Química , Farmacologia , Glucosídeos Iridoides , Iridoides , Química , Farmacologia , Estrutura Molecular , Plantas Medicinais , Química , Piranos , Química , Farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA